学校番号 206

令和4年度 数学科

教科	数学	科目	数学Ⅲ	単位数	4 単位	年次	3年次
使用教科書	新編数学Ⅲ	改訂版	(啓林館)				
副教材等	アベレージ	女訂版 娄	文学 (啓林館)				

1 担当者からのメッセージ(学習方法等)

- ・分からないところは、先生、友人に積極的に質問しましょう。 逆に分かっている人は積極的に分からない人に教えましょう。他人に教えることで問題のポイントや ミスしやすい箇所などに注目することができるので、自分の理解も深まります。
- ・授業用のノートと、問題集用のノートを用意してください。
 問題演習ではただ答えを求めるだけでなく、途中式や考え方も書くようにしましょう。また、各自答え合わせをしてください。答え合わせは、自分がどこでつまずいたかを知るための大切なものです。
 ・家庭学習における課題は、定期的に提出してもらいます。最後まであきらめずに取り組みましょう。

2 学習の到達目標

平面上の曲線と複素数平面,極限,微分法及び積分法についての理解を深め,知識の習得と技能の習熟を図り,事象を数学的に考察し表現する能力を伸ばすとともに,それらを積極的に活用する態度を育てる。

3 学習評価(評価規準と評価方法)

観点	a:関心・意欲・態度	b:数学的な見方・考え 方	c:数学的な技能	d:知識・理解
観点の趣旨	平面上の曲線と複素数 平面,極限,微分法およ び積分法に関心をもつと ともに,それらを事象の 考察に積極的に活用して 数学的論拠に基づいて判 断しようとする。	事象を数学的に考察し 表現したり,思考の過程 を振り返り多面的・発展 的に考えたりすることな どを通して,平面上の曲 線と複素数平面,極限, 微分法および積分法にお ける数学的な見方や考え 方を身につけている。	平面上の曲線と複素数 平面,極限,微分法およ び積分法において,事象 を数学的に表現・処理す る仕方や推論の方法など の技能を身につけてい る。	平面上の曲線と複素 数平面,極限,微分法お よび積分法における基 本的な概念,原理・法則 などを体系的に理解し, 知識を身につけている。
評価方法	授業態度 発問評価 ノート確認 課題プリント 小テスト 定期考査 観察等	授業態度 発問評価 ノート確認 課題プリント 小テスト 定期考査 観察等	授業態度 発問評価 ノート確認 小テスト 定期考査 観察等	授業態度 発問評価 ノート確認 課題プリント 小テスト 定期考査 観察等

上に示す観点に基づいて、学習のまとまりごとに評価し、学年末に5段階の評定にまとめます。 学習内容に応じて、それぞれの観点を適切に配分し、評価します。

4 学習の活動

2)4	出	7	主	な評価	田の匍	点		
学期	単元名	学習内容	a	b	С	d	単元(題材)の評価規準	評価方法
	複素数平面	第1節 複素数平面 1.複素数平面 2.複素数の極形式 3.ド・モアブルの定理 第1節 2次曲線 1.放物線 2.楕円 3.双曲線	0	0 0 0	0 0 0 0	0000	a:媒介変数表示のよさを捉え、図形の方程式の考察に活用しようとしている。b:極座標と直交座標との関係を捉えることができる。c:媒介変数表示された曲線が、どんな曲線であるかを求めることができる。d:曲線の極方程式を極座標と関連付けて理解している。a:放物線や楕円、双曲線を、幾何学的な定義にもとづいてとらえることに関心をもち、調べようとする。	授業態度 ノート確認 課題プリント レポート課題 小テスト 定期考査 振り返りシート 授業態 確認 課題プリント 関ッシート
1学期	平面上の曲線	4.2次曲線と平行移動 5.2次曲線と直線			0 0	0 0	b:放物線, 楕円, 双曲線の方程 式の標準形を導く過程を考察することができる。 c:与えられた条件から, 放物線の方程式, 焦点の座標, 準線の方程式などを求めることができる。 d:放物線に関する基本的な用語の意味を理解している。楕円に関する基本的な用語の意味を理解している。双曲線に関する基本的な用語の意味を理解している。	小テスト 定期考査 振り返りシート
		第2節 媒介変数表示と極座標 1. 曲線の媒介変数表示 2. 極座標と極方程式 3. いろいろな曲線	0 0 0	0	0	0 0	a: 曲線の媒介変数表示に関心をもち、調べようとする。 b: 媒介変数表示された曲線の方程式を $y = f(x)$ の形に導く過程を考察することができる。 c: 媒介変数表示された曲線の方程式を $y = f(x)$ の形に導くことができる。 d: 媒介変数表示について理解している。	授業態度 ノート確認 課題プリント レポート課題 小テスト 定期考査 振り返りシート

	No.	第 1 第 4 年 四 米 万 I						松米於中
	数列	第1節 無限数列					a:無限数列や無限級数の収	授業態度
	う 極	1. 無限数列と極限	0	0	0	0	東・発散に関心をもち,数列	ノート確認
	限	2. 無限等比数列	0	0	0	0	の極限の考察に活用しよう	課題プリント
							としている。	レポート課題
							b:無限数列や無限級数の収	小テスト
		第2節 無限級数					東・発散について考察するこ とができる。	定期考査
		1. 無限級数	0	0	0	0	c:数列や級数の極限値の性質	振り返りシート
		2. 無限等比級数	0	0	0	0	を活用して,数列の極限値を	
							求めることができる。	
							d: 数列や無限級数の極限を調べるための, 基礎的な知識を	
							タにつけている。	
		第1節 分散関数と無理関数					a:分数関数や無理関数の性質	授業態度
		1. 分数関数とそのグラフ		0	0	0	を調べようとする。	ノート確認
		2. 無理関数とそのグラフ	0	0	0	0	b:合成関数や逆関数などの関	課題プリント
		3. 逆関数と合成関数			0	0	数の概念を考察することが	レポート課題
							できる。	小テスト
							c:分数関数や無理関数のグラ	定期考査
							フや式を利用して、方程式、	振り返りシート
							不等式を解くことができる。	
	関						d:合成関数, 無理関数の定義や	
	関数とその極						性質を理解している。	
	その	第2節 関数の極限と連続性					a:無限数列や無限級数の収	授業態度
	極限	 1. 関数の極限		0	0	0	東・発散に関心をもち,数列	ノート確認
		2. 関数の連続性	0	0	0	0	の極限の考察に活用しよう としている。	課題プリント
							b:無限数列や無限級数の収	レポート課題
0							東・発散について考察するこ	小テスト
2 学 期							とができる。	定期考査
期							c:数列や級数の極限値の性質 を活用して,数列の極限値を	振り返りシート
							求めることができる。	1成り返りン一ト
							d:数列や無限級数の極限を調	
							べるための, 基礎的な知識を	
		第1節 微分と導関数					身につけている。 a:いろいろな関数値の極限の	授業態度
							様子や、連続関数の性質につ	
		1. 微分可能と連続	0	0		0	いて理解している。	ノート確認
		2. 微分と導関数	0	0	0	0	b:微分の定義から, 微分方の基	課題プリント
		3. 合成関数の微分法	0		0	0	本公式や,合成関数,逆関数の微分を考察することがで	レポート課題
	微						きる。	小テスト
	分法						c: 関数の微分可能性を判定し	定期考査
							たり,合成関数や逆関数の微	振り返りシート
							分を求めることができる。 d:微分可能と連続との関係や	
							微分法の基本公式、合成関	
							数,逆関数の微分について理	
							解している。	

	, , , ,	人们入子生用 特。特。第二章 1988年					・ハンフェンフより間料の労間料め	
		第2節 いろいろな関数の導関数					a:いろいろな関数の導関数や 高次導関数を考えようとす	授業態度
		1. 三角関数の導関数	0	0	0	\circ	同び等例数で与えよりとする。	ノート確認
		2. 対数関数-指数関数の導関数	0	0	0	\circ	b:微分の定義から, いろいろな	課題プリント
		3. 高次導関数			0	\circ	関数の導関数を考察するこ	レポート課題
							とができる。	小テスト
							c:いろいろな関数の導関数や, 高次導関数を求めることが	定期考査
							できる。	振り返りシート
							d:いろいろな関数の導関数に	****
							ついて理解している。	
		第3節 導関数の応用					a:微分を利用して、グラフやい	授業態度
		1. 接線の方程式	\circ		\circ	\bigcirc	ろいろな事象の考察に活用 しようとする。	ノート確認
		2. 平均値の定理		0	\circ		b:微分からグラフの増減や, い	課題プリント
		3. 関数の増減		0	\circ		ろいろな事象の考察をする	レポート課題
		4. 第2次導関数とグラフ			0		ことができる。	小テスト
		5. 第2次導関数と極大・極小		0	\circ		c:いろいろな関数のグラフの	定期考査
		NA = 2 14 NASSA C 1877 1874)		増減や,極大値・極小値を求 めたりすることができる。	振り返りシート
							d:導関数の符号と関数の増減	100 J (2 J 2)
							の関係を理解している。	
		第4節 いろいろな応用					a:微分を活用し、さまざまな問	授業態度
		1. 関数の最大・最小		0	0	\bigcirc	題に取り組もうとする。	ノート確認
		2. 方程式・不等式への応用			0	\circ	b:微分や媒介変数表示を利用 して,グラフの概形を考察す	課題プリント
		3. 速度と加速度	0				ることができる。	レポート課題
		4. 関数の値の近似	0	0		\bigcirc	c:微分や媒介変数表示を利	小テスト
)			_	用して、グラフの概形をかく	定期考査
							ことができる。 d:事象とグラフとの関係を理	振り返りシート
							解している。	がり返りと一下
		第1節 不定積分					a:不定積分の意味を理解し、い	授業態度
		1. 不定積分			0	0	ろいろな関数の不定積分を	ノート確認
		2. 置換積分		0	0		考えようとする。	課題プリント
		3. 部分積分		0) (b:微分と積分との関係を理解 し,いろいろな関数の不定積	レポート課題
					_		分について考察することが	
		4. いろいろな関数の不定積分	0		0		できる。	小テスト
							c:分数関数や,指数関数,三角	定期考査
							関数などのいろいろな関数 について,その不定積分を求	振り返りシート
							めることができる。	
3	積八						d:微分法と積分法の関係を理	
3 学 期	積分法						解している。	
		第2節 定積分					a:いろいろな関数について、そ	授業態度
		1. 定積分			0	\circ	の定積分を考えようとする。 b:いろいろな関数について, そ	ノート確認
		2. 定積分と微分	\circ		0		の定積分を考察することが	課題プリント
							できる。	レポート課題
							c:不定積分や、置換積分、部分	小テスト
							積分を利用して、いろいろな 関数について 定種公共 党	定期考査
							関数について, 定積分をも求 めることができる。	振り返りシート
							d:定積分や区分求積法の意味	31A 7 ACE 7 V
							を理解している。	

第3節 定積分の応用					a:定積分を用いて, いろいろな	授業態度
1. 面積		0	0	0	関数で囲まれた図形の面積, 回転体の体積や曲線の長さ	ノート確認
2. 体積		\circ	0	0	について考察しようとする。	課題プリント
3. 曲線の長さ	0	\circ	0	0	b:いろいろな関数で囲まれた	レポート課題
4. 定積分と和の極限		0	0	0	図形の面積や、回転体の体	小テスト
5. 定積分と不等式			0	0	積, 曲線の長さについて考察 することができる。	定期考査
					c:いろいろな関数で囲まれた	振り返りシート
					図形の面積や、回転体の体	
					積, 曲線の長さをもとめるこ	
					とできる。	
					d:定積分と面積,体積,曲線	
					の長さの関係を理解してい	
					る。	

※ 表中の観点について a: 関心・意欲・態度 b: 数学的な見方・考え方c: 数学的な技能 d: 知識・理解

※ 年間指導計画 (例) 作成上の留意点

・原則として一つの単元(題材)で全ての観点について評価することとなるが、学習内容(小単元)の各項目において特に重点的に評価を行う観点(もしくは重み付けを行う観点)について 〇を付けている。